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Abstract
A simple numerical scheme based on the local equilibrium theory is developed
to compute the density and pressure profiles of a weakly repulsive Bogoliubov
gas. From these profiles the local velocity of sound has been calculated.
The numerical scheme avoids the divergence problems encountered in some
cases and the results agree well with those of previous workers. The effect
of interactions on bosons confined to a small region of space by a bounded
harmonic potential of extent r0 has also been studied.

PACS numbers: 21.60.Fw, 05.30.Jp, 03.75.Hh

1. Introduction

The characteristics of BEC are significantly altered by the interatomic interactions, particularly
when the condensation density becomes a sizeable fraction of the total density at low
temperatures. The model generally employed is that of a weakly repulsive dilute Bose
gas which has been extensively studied by a number of authors. The path-breaking work of
Bogoliubov [1] was followed by Huang, Yang and Luttinger extending the theory to non-
zero temperatures using the pseudopotential method [2]. The application of field-theoretic
methods to this problem was initiated by Beliaev [3] and extended by Popov among others
[4, 5]. However, the fully microscopic approaches, referred to above, are not easily adaptable
to systems which are of finite extent or which are inhomogeneous in other ways.

A very fruitful idea of the condensate wavefunction ψ(r) as the ‘order parameter’ was
introduced independently by Gross and Pitaevskii [6, 7] who derived a differential equation
for ψ(r), now known as the Gross–Pitaevskii (GP) equation. This equation, analogous to the
Ginzburg–Landau (GL) equation for superconductors, has been applied with great success to
the problem of trapped Bose condensates [8–10].

We employ the local equilibrium theory to study the properties of a weakly repulsive Bose
gas in a harmonic potential. Detailed calculations of the various thermodynamic functions
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are available [10, 11]. Many of these approaches employ perturbation expansions, which are
plagued by divergences in the vicinity of the critical temperature TC [12]. Hence, it is difficult
to set up a meaningful approximation scheme. The density profile of the weakly interacting
Bose gas confined in a potential well has been calculated by Oliva [13] and Su et al [14] using
the local equilibrium theory. Oliva breaks up the density into four intervals for calculating
the chemical potential and employs a very tedious scheme to carry out the calculations. Su
et al [14] resort to perturbation expansions which also lead to very complicated expressions
and need to be handled carefully in the degenerate phase.

We discuss the formulation of the problem in section 2 and develop a consistent numerical
scheme, avoiding any perturbation expansions. The degenerate and the non-degenerate phases
are treated separately in sections 3.1 and 3.2, respectively. A major difference, compared to
the homogeneous case, is the appearance of a surface of separation between the degenerate
and the non-degenerate phases. We make a numerical estimate of the radius xD of this surface.
This enables us to calculate the density and pressure profiles and the local sound velocity.
Some independent checks on the numerical calculations are discussed in section 3.3.

The potential employed in our calculations is the usual unbounded harmonic potential
extending to infinity. However, it is of interest to study particles confined in a finite trap of size
r0. Lumb and Muthu [19, 21] and Lumb et al [15] have studied BEC and the thermodynamic
properties of a system of non-interacting trapped bosons, using the bounded harmonic potential
(BHP) which extends to r0 rather than infinity.

The interplay of a finite size and interactions is also worthy of study and can lead to
interesting possibilities. We content ourselves by reporting the calculations for one typical
case in section 3.4. A discussion of the results and our main conclusions is presented in
section 4.

2. Formulation of the problem: density and pressure profiles

We consider a system of N bosons, each of mass m, under the effect of an isotropic harmonic
potential, typical of experimental traps. The potential has the form

V (r) = 1
2mω2r2, (1)

ω being the confining oscillator frequency. The generalization to anisotropic harmonic traps
is straightforward. The system is supposed to be divided into small cubical cells of size L3.
For each cell the external potential is taken to be constant equal to its value at the centre of
the cell. The cells are such that the number of bosons in each cell is large enough for them
to be treated as a Bose gas in a uniform averaged potential. We also assume these cells to
be statistically independent of one another but in mutual equilibrium. For equilibrium, the
chemical potential of the cells has to be a constant and it is given by the sum of the local
internal chemical potential and the applied external potential, i.e.

µ = µint(r) + Vext(r). (2)

The internal chemical potential within a cell is the chemical potential of a field-free Bose gas
which is a functional of its local density, i.e.

µint(r) = µFF(n(r)). (3)

This lattice equilibrium theory is discussed in detail by Lumb et al [15].
We consider a sufficiently dilute gas, so that only binary collisions are relevant and these

collisions are characterized by a single parameter, namely the s-wave scattering length ‘a’.
The two-body potential can be written as

V (r) = v0δ(r)
∂

∂r
r, r = |r1 − r2|, (4)
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where the coupling constant v0 is related to ‘a’ through

v0 = 4πh̄2a

m
. (5)

For a wavefunction ψ(r), (4) gives

V (r)ψ(r) = v0δ(r)
∂

∂r
(rψ(r)). (6)

If ψ(r) is regular in r = 0, it yields the usual expression

V (r)ψ(r) = v0ψ(0)δ(r). (7)

The parameter (na3) should be �1 in the dilute limit. This is satisfied by all alkali gas
condensates. To extend the theory to the case of a weakly repulsive Bose gas, all one has to do
is to replace the ideal Bose gas in each cell by the corresponding Bogoliubov weakly interacting
gas. It is well known that for a field-free Bogoliubov gas below the critical temperature TC of
BE transition, not very far from TC, the chemical potential can be written as [16]

µFF(n(r)) = nFF(r)v0 + nC(T )v0, (8)

where n(r) is the density of the gas,

nC(T ) = 2.612

λ3
(9)

is the critical density, i.e. the density at the onset of BEC and λ is the thermal de-Broglie
wavelength of the particles of mass m at temperature T given by

λ =
{

h√
2πmkT

}
. (10)

The thermodynamic potential �(m) of the gas in a cell centred at m with a uniform potential
V (rm) is

�(m) = − 1

β
ln Tr

{
exp

[
−β

(∑
k

(
h̄2k2

2m
− (µ − V (rm))

)
a
†
kak + Vint

)]}
, (11)

where

Vint = v0

2v

∑
k1,k2,k3

a
†
k1

a
†
k2

ak3ak1+k2−k3 , (12)

v is the volume of a cell, ak, a
†
k denote, respectively, the annihilation and creation operators of

particles in the cell m and the wave vectors k of the particles are given by

k = 2π

L
(n1, n2, n3), ni = 0,±1,±2, . . . . (13)

Equation (11) for � is the same as that of a gas in zero external potential with chemical
potential µ′ = µ − V (rm). The pressure is given by the usual thermodynamic relation

P(m) = −∂�(m)

∂v

∣∣∣∣
T ,µ

. (14)

Since v remains unaltered by the application of an external potential we can obtain P by just
replacing the internal chemical potential by µ′ in the expression [16]

P FF = kT

λ3
ζ(5/2) +

v0

2

{
[nFF]2 + n2

C(T )
}
. (15)

Since µ appears only in the expression for the density we need to first derive an expression
for the density.



8668 S Lumb and S K Muthu

The average number of particles in a cell, N̄ cell, is given as

N̄ cell = −∂�(m)

∂µ

∣∣∣∣
T ,v

= − ∂�FF(µ′)
∂[µFF + V (rm)]

∣∣∣∣
T ,v

= −∂�FF(µ′)
∂µFF

∣∣∣∣
T ,v

= N̄FF(µ′). (16)

Hence, we only need to use the displaced chemical potential. The same, obviously, is true for
the density, i.e.,

n̄cell(rm) = n̄FF(µ′, T ). (17)

From (8), it follows that

n̄cell(rm) = [µ − V (rm) − nC(T )v0]/v0. (18)

The same is true for the condensate density, namely

nFF
0 = nFF − nC(T ), (19)

and hence

n0(rm) = [µ − V (rm) − 2nC(T )v0]/v0. (20)

This is an important relation since it furnishes an equation for the surface separating the
degenerate and the normal phases. Let the radius of the degenerate phase be given by rD.
Then n0(rD) = 0 gives

1
2mω2r2

D = µ − 2nC(T )v0. (21)

The number of particles in the degenerate phase is obtained by integrating {n0 + nC(T )} over
the region extending from 0 to rD. This yields

Ndeg = 2

3
√

2π
ζ(3/2)τ 3/2x

3/2
D +

x
5/2
D a0

15a
, (22)

where

xD =
(

rD

a0

)2

, (23)

τ = kT

h̄ω
(24)

is the dimensionless temperature and

a0 =
(

h̄

mω

)1/2

(25)

is the harmonic oscillator length. TC, the critical temperature of BEC phase transition is the
temperature for which the degenerate phase radius rD shrinks to zero. Therefore rD = 0 gives
the critical line of the system. We have from (21)

µC = 2nC(T )v0, (26)

where µC is the critical chemical potential.
For the normal part, or the non-degenerate phase, r > rD and [16]

µFF = µ0 + 2nFFv0, (27)

µ0 being the chemical potential of the uniform ideal Bose gas. The density of the particles in
the excited states is given by

n = 1

λ3
g3/2[exp(βµ0)], (28)
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gr(z) being the Bose–Einstein functions defined by

gr(z) = 1

�(r)

∫ ∞

0

xr−1 dx

z−1 ex − 1
=

∞∑
l=1

zl

lr
. (29)

Replacing µFF by µ′ and substituting for µ0 from (27), we have

n(rm) = 1

λ3
g3/2{exp[β(µ′ − 2n(rm)v0)]}. (30)

This is a transcendental equation and needs to be solved numerically. Writing it in terms of
x = (r/a0)

2 and τ and using (21), we get

n(rm)λ3 = g3/2

(
exp

{
−

[
x − xD

2τ
− η(2.612 − n(rm)λ3)

]})
(31)

with

η = 2

√
2τ

π

a

a0
≈ 1.6τ 1/2 a

a0
. (32)

If we put a(x) = 2.612 − n(rm)λ3, (31) becomes

2.612 − a(x) = g3/2

{
exp

[
−

(
x − xD

2τ
− ηa(x)

)]}
(33)

and

nnon-deg(rm) = 2.612 − a(x)

λ3
. (34)

The number of particles in the non-degenerate phase is given by integrating (34) with r ranging
from rD to some maximum value r0 or equivalently x ranging from xD to x0.

Nnon-deg = τ 3/2

√
2π

∫ x0

xD

[2.612 − a(x)]x1/2 dx. (35)

The choice of x0 is dictated by the desired accuracy. The total number of particles for T < TC

is given by the sum of (22) and (35). The number density in the degenerate cells is obtained
from (18) and (21) as

ndeg(rm)a3
0 = ζ(3/2)τ 3/2

(2π)3/2
+

(xD − x)a0

8πa
(36)

and the contribution to the pressure from the degenerate cells can now be written as

P
deg
cell a

3
0

h̄ω
= τ 5/2ζ(5/2)

(2π)3/2
+

τ 3ζ 2(3/2)a

2π2a0
+

(xD − x)2a0

32πa
+

ζ(3/2)τ 3/2(xD − x)

2(2π)3/2
. (37)

For non-degenerate cells the pressure is given by

P non-deg(m) = kT

λ3
g5/2[exp(βµ0)] + v0n

2(rm) (38)

or

P
non-deg
cell a3

0

h̄ω
= τ 5/2

(2π)3/2
g5/2

(
exp

{
−

[
(x − xD)

2τ
− ηa(x)

]})
+

τ 3a

2π2a0
[2.612 − a(x)]2.

(39)
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For T > TC, rD = 0. We again use (30) and the range of integration now extends from zero
to some maximum value x0. We now proceed to outline a numerical scheme to carry out the
calculations.

3. Numerical scheme

3.1. Degenerate phase

The scheme consists in fixing the total number of particles N and the interaction strength
‘a’ in terms of the harmonic oscillator length a0. We have taken two cases, namely (i)
N = 10 000, a = 10−3a0 and (ii) N = 40 000, a = 110aB with ω = 1171.815(s−1), aB being
the Bohr radius. We choose ω in the second case as the geometric average of ωx, ωy and ωz

used by Su et al [14]. Next for some given value of τ , for which the profiles are to be plotted,
we choose some value of rD in terms of a0. Note that the smallest possible cell size for an ideal
gas is

√
2πa0 [15]. We solve for a(x) in (33) using the method of inverse interpolation. From

this we calculate the total number of particles as the sum of (22) and (35). The calculations
are repeated for some other values of rD and the value corresponding to fixed N is determined
graphically. Inverse interpolation is used as a check on this value. The corresponding xD is
calculated from (23), and (34), (36), (37) and (39) are used for plotting of profiles for this
temperature. The exercise is repeated for a range of values of τ(10 � τ < τC).

3.2. Non-degenerate phase

We write (30) as

b(x) = g3/2

[
exp

(
µ

h̄ωτ
− x

2τ
− ηb(x)

)]
, (40)

where

nnon-deg(rm) = b(x)

λ3
. (41)

Pressure is now given as

P
non-deg
cell a3

0

h̄ω
= τ 5/2

(2π)3/2
g5/2

[
exp

(
µ

h̄ωτ
− x

2τ
− ηb(x)

)]
+

τ 3a

2π2a0
b(x)2. (42)

The self-consistent procedure for performing the calculations parallels the one used above for
the degenerate phase and consists of the following sequence of steps:

(i) We fix the values of N and (a/a0).
(ii) We fix τ and choose some starting value of |µ|/h̄ω. Next (40) is solved for b(x) using

Bessel’s formula of inverse interpolation, varying x in steps of 0.01.
(iii) The total number of particles is obtained by integrating (41). The whole process is

repeated for a set of values of |µ|/h̄ω. A graph is plotted between N and |µ|/h̄ω. For the
sake of illustration, we give the graph for τ = 30, a/a0 = 10−3 in figure 1.

(iv) The value of |µ|/h̄ω corresponding to a given N is read from the graph and N is again
calculated using (41).

(v) The whole process is repeated till we get a value of N which differs from the desired
value by less than a few parts in 105. For example, from the graph of figure 1, we get
|µ|/h̄ω = 31.126 for N = 104.

Once µ/h̄ω is known, we can plot both density and pressure profiles using (41) and (42).
These plots are shown in figures 2–5.
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Figure 1. Graph for finding |µ|/h̄ω for N = 10 000 and a/a0 = 0.001 at τ = 30.
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Figure 2. Density profiles for N = 10 000 and a/a0 = 0.001.

3.3. Some independent checks on the numerical computations

3.3.1. Comparison with Su et al [14]. As pointed out in section 1, the various perturbation
schemes, if not carefully used, fail to converge in the degenerate phase [12]. However, as a
check on our calculations, we can compare our results with Su et al [14] in the non-degenerate
phase. To this end, we need to estimate z̃ = exp(βµ0(0)), the non-interacting internal fugacity
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Figure 3. Pressure profiles for N = 10 000 and a/a0 = 0.001.
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Figure 4. Density profiles for N = 40 000 and a/a0 ≈ 0.007.

at the centre of the potential. Chou, Yang and Yu [17] derive an explicit expression for n0(r)

by calculating the density matrix. Their result is

n0(r)λ3 = 1

τ 3/2

∞∑
l=1

(
sinh

l

τ

)−3/2

zl exp

[
− r2

a2
0

tanh

(
l

2τ

)]
. (43)
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Figure 5. Pressure profiles for N = 40 000 and a/a0 ≈ 0.007.

Table 1. Comparison of fugacity values.

τ Numerical method Analytical method of Su et al [14]

N = 40 000, a/a0 ≈ 0.007
35.0 0.842 0.817
40.0 0.586 0.574
50.0 0.311 0.307

From this one obtains

n0(o)λ3 = 1

τ 3/2

∞∑
l=1

(
sinh

l

τ

)−3/2

zl. (44)

Integrating (43) over r gives

N = 1

8

∞∑
l=1

zl(
sinh3 l

2τ

) . (45)

Fixing N and τ we can obtain z from this equation. Using (13) of Su et al [14]

ln z = ln z̃ + ηn0(0)λ3 (46)

with η given by (32), we can estimate z̃ using (44). This z̃ can be plugged into (14) of Su
et al [14] to obtain n(r). For a comparison of the numerical results with the analytical method
we choose the values of fugacity z. These are given in table 1.

We have also plotted the density profiles for these temperatures by the two methods.
These are shown in figure 6.

3.3.2. Calculation of TC. We have estimated τC by locating the point xD = 0 on the
temperature axis of the xD–τ plot. These plots are shown in figures 7 and 8. We can also use



8674 S Lumb and S K Muthu

0 2.5 5 7.5 10 12.5 15
r/a

0

0

2

4

6

8

10

12

14

16

n(
r)

 a
03

τ=35

τ=40

τ=50

Figure 6. Comparison of density profiles for N = 40 000 and a/a0 ≈ 0.007 by numerical method
and using (14) of [14]. The solid line represents the results of our numerical method and the dotted
line shows the results of analytical method, i.e. using (14) of [14].
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τ

0
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4

5

6

7

x
D

Figure 7. Condensate radius xD versus τ for N = 10 000 and a/a0 = 0.001.

the condition for the critical line, given by (26), to get an estimate of τC. Using this value of µ

we calculate the number density using (40) and (41) and hence, the total number of particles,
for various τ values. The value of τ corresponding to a given fixed N is then found graphically.
This τ is then called the critical temperature τC.
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Figure 8. Condensate radius xD versus τ for N = 40 000 and a/a0 ≈ 0.007.

Table 2. Comparison of τC values.

From xD = 0 Using (26) Kao and Jiang [18]

(a) N = 40 000, a/a0 ≈ 0.007
τC 30.6 35.1 29.7

(b) N = 10 000, a/a0 = 0.001
τC 20.4 20.5 20.1

In a recent paper Kao and Jiang [18] made a calculation of TC for a trapped weakly
interacting Bose gas taking the contributions of both the thermal and condensate components
into account. They obtained the result

TC

T 0
C

= 1 − 1.78
a

a0
N1/6 (47)

with

T 0
C ≈ 0.9405

h̄ω

k
N1/3. (48)

The comparison of the results of the three methods is given in table 2.

3.4. The bounded harmonic oscillator potential (BHP) case

As pointed out in the introduction the combined effect of a finite size and interactions can lead
to interesting possibilities. So we now look at such a system. To this end, we have to adapt
the calculations of section 3.3 to the case of a BHP.

For reasons outlined in the introduction, we define

V (r) = 1
2mω2r2, r < r0

= ∞, r > r0 (49)
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Figure 9. Density profiles for N = 40 000, a/a0 ≈ 0.007, τ = 25; x0 = 100 and for an
unbounded potential.

and call it the bounded harmonic potential (BHP). In the limit r0 → ∞, it becomes identical
with the unbounded harmonic potential. A detailed argument for this choice was given by us
in an earlier publication [15]. Here, we outline the essence of the argument.

If the highest energy level, Em, that matters at a certain temperature is V (r0)/α, with α say
about 2, the particles are essentially bound in the region r < r0. Coupled with the condition
of the applicability of statistical mechanics, namely Em � kT , one obtains the condition

a1

α
� 1 (50)

with

a1 = x0

2τ
, x0 = r2

0

a2
0

. (51)

a1, which can also be written as V (r0)/kT , serves as a cross-over parameter [19]. For a1 → 0
we have the limit of a uniform ideal gas while a1 → ∞ represents bosons in an unbounded
harmonic potential. It has been shown in [15] that finite-size effects become appreciable for
approximately 2 � a1 � 7.

To illustrate the general principles involved we shall fix x0 = 100 and τ = 25, so that
a1 = 2. The numerical scheme outlined in section 3.3 will still work. However, in the present
case, the value of x0 is fixed by the size of the trap and is not dictated by the desired accuracy.
We fix N and a/a0 as before. Then we calculate xD for various values of τ . Substituting these
into the relevant formulae we can plot the density and pressure profiles. We can compare
these profiles with those plotted for an unbounded harmonic oscillator potential for the case
of N = 40 000 and a/a0 ≈ 0.007. The comparison is shown in figures 9 and 10.

The density and pressure profiles can be used to calculate the local velocity of sound c
via the relation

c2 = 1

m

(
∂P

∂n

)
= a2

0ω
2

(
∂P ′

∂
(
na3

0

)
)

. (52)
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Figure 10. Pressure profiles for N = 40 000, a/a0 ≈ 0.007, τ = 25; x0 = 100 and for an
unbounded potential.

Table 3. Comparison of dimensionless velocity of sound.

x Unbounded Bounded (x0 = 100)

N = 40 000, a/a0 ≈ 0.007, τ = 25
1.0 3.052 3.290
2.0 2.892 3.143
5.0 2.620 2.894

We give the values for the dimensionless velocity of sound c/(a0ω) for N = 40 000, a/a0 ≈
0.007, for τ = 25 for both the unbounded potential and the BHP in table 3. A graph depicting
its variation with the distance from the centre of the trap for both the unbounded and BHP at
τ = 25 is shown in figure 11. The density and pressure profiles can also be used to work out
the local isotherms and the local equations of state.

We have also plotted the condensate fraction for N = 40 000 for both the ideal and the
interacting gases (a/a0 ≈ 0.007) for x0 = 100, and for the infinitely extended harmonic
potential, in figure 12.

4. Results and conclusions

In the preceding sections we have employed the local equilibrium theory to study the properties
of a weakly repulsive Bose gas in a harmonic potential. For this all one has to do is to replace
the ideal Bose gas in each cell by the corresponding Bogoliubov weakly interacting gas in the
scheme adopted by Lumb et al [15].

A consistent numerical scheme, developed in section 3, enables us to make an estimate
of the radius xD of the surface of separation between the degenerate and the non-degenerate
phases. Armed with this knowledge, we are able to calculate the density and pressure profiles
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Figure 11. Comparison of dimensionless velocity of first sound for N = 40 000 for weakly
repulsive (a/a0 ≈ 0.007) gas in an unbounded oscillator potential as well as a bounded potential
corresponding to x0 = 100 for τ = 25.
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Figure 12. Comparison of condensate fraction N0 for N = 40 000 for ideal and weakly repulsive
(a/a0 ≈ 0.007) gas in a bounded potential corresponding to x0 = 100.

for a fixed (i) total number of particles N and (ii) a/a0, for various values of τ . This entails,
inter-alia, solving (33) and (40), using the method of inverse interpolation. The profiles are
calculated using (34), (36), (37) and (39). These plots are shown in figures 2–5. Figure 2
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Figure 13. Comparison of xD for the unbounded potential and the BHP corresponding to x0 = 100
for N = 40 000 (a/a0 ≈ 0.007).

depicts the density profile, showing the behaviour of n(r)a3
0 as a function of r/a0, for N = 104

and a/a0 = 0.001, for a range of values of τ(10 � τ � 35). The calculated τC is close to 20
(table 2). Note the pronounced enhancement in n(r)a3

0 for τ = 20 near r/a0 ≈ 0.75. In
figure 4 we plot the density profile for the case N = 40 000 and a/a0 ≈ 0.007, for
(10 � τ � 50). The enhancement near τC for r/a0 ≈ 1 is again evident. Our approximation
scheme avoids all convergence problems associated with perturbation expansions close to τC.

Figures 3 and 5 give the corresponding pressure profiles for the two cases. Combining
the density and pressure profiles we can calculate the local velocity of sound. This is done in
the sequel.

The exercise of providing some independent checks on the numerical computations is
carried out in section 3.3. We first set up a comparison with the calculations of Su et al
[14]. This is made possible by using an explicit expression for n0(r), derived by Chou et al
[17] by calculating the density matrix. The fugacity values are compared in table 1 for
N = 40 000 and a/a0 ≈ 0.007. The agreement between the values is excellent. The density
profiles obtained by the two methods are drawn in figure 6 for comparison. The agreement is
excellent, except for τ = 35 (which is close to τC) for r/a0 below 2.5.

Another check on the computations is provided by the calculation of τC. It can be estimated
by locating the point xD = 0 on the temperature axis of the xD–τ plot. These plots are shown
in figures 7 and 8 for (i) N = 104, a/a0 = 0.001 and (ii) N = 40 000, a/a0 ≈ 0.007,
respectively. This method yields values τC = 20.4 and τC = 30.6, respectively for the two
cases. These compare well with the values calculated from the critical line given by (26), as
is evident from table 2. The values calculated using a recent expression for TC derived by Kao
and Jiang [18] are also included in table 2.

In the earlier sections a numerical scheme was presented to study the properties of a
weakly repulsive interacting collection of bosons trapped in a harmonic potential. Section 3.4
looks at the same system in a BHP to delineate the combined effect of a finite size and
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interactions. To illustrate the general principles x0 is fixed at 100 and the scheme of
section 3.3 is adapted to the case of a BHP. We choose N = 40 000 and a/a0 ≈ 0.007
and calculate xD for various values of τ . As expected on physical grounds, the condensate
radius increases with confinement. For example, for τ = 25, xD increases from 14.891 to
17.912. The comparison can be seen in figure 13.

The density and pressure profiles can be plotted by employing the relevant formulae with
the indicated modifications. These are presented in figures 9 and 10, respectively for τ = 25.
These profiles have been compared with those plotted for an unbounded harmonic oscillator
potential.

The dimensionless velocity of sound c′ obtained from (52) has been tabulated in table 3
and depicted graphically in figure 11. The phonon like excitations known as Bogoliubov
sound are obtained for λ � ξ , where λ is the wavelength of the excitations and ξ = √

8πan0

(n0 being the condensate density) is the healing length. Experimentally, sound waves in
Bose–Einstein condensed gases are generated by focusing a laser pulse on the centre of the
trap. The subject of the various possible modes of oscillation is of great interest [8, 20].

We have also computed the condensate fraction N0/N for the case N = 40 000 for both
the ideal and a weakly repulsive Bose gas (a/a0 ≈ 0.007) in a BHP with x0 = 100. All
the results are plotted in figure 12. It is evident from the figure that the condensate fraction
increases when the system is confined to a small region. The depletion of the condensate in
the presence of repulsion between bosons is another feature which can be clearly seen. A very
detailed analysis of the condensate fraction has been recently carried out by F Gerbier et al
[22] and, Davis and Blakie [23].
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